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Unsteady turbulent gas motion and heat transfer are examined on a circular cylindrical 
tube segment bounded at one end by a fixed wall and at the other by a piston capable of dis- 
placement. At the initial instant the pressure, density, and temperature of the gases in the 
domain between the wall and the piston substantially exceed the state parameters in the free 
part of the channel. The tube wall is heat conducting. Under the action of the pressure of 
compressed gases the piston, of finte mass, acquires significant acceleration and moves to 
the free end of the tube. Such a formulation is known as the classical Lagrange problem [I] 
in the scheme to determine the stream characteristics and the piston motion velocity aver- 
aged over the channel section. 

The purpose of this paper is to investigate the turbulent flow configuration under the 
conditions being examined and to determine the parameters of the dynamical and thermal ac- 
tion of the stream on the channel wall. 

We assume that axial flow symmetry exists. The gas is perfect, axial heat and momen- 
tum transfer by diffusion is absent. In this case the gas flow is described by the Reynolds 
equation in the "narrow channel" approximation [2], which in combination with the energy 
equations for the gas and the heat conduction equation for the wall have the form 
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Here, t, x, r are the time and independent space coordinates; Ux, u r are velocity vector com- 
ponents; p, T, p are the density, temperature, and pressure of the gas; D, X are the molecu- 
lar viscosity and heat conduction coefficients; Dt, Xt are the turbulent analogs of the 
transport coefficients; Cp and Rg are the isobaric specific heat and the gas constant; Pw, 
Cw, X w are the density, specific-heat, and heat conduction coefficient of the wall material; 
and T w is the wall temperature. All the quantities in the system (1)-(3) are averaged (aver- 
age of the turbulent fluctuations). The temperature dependence of the gas viscosity was de- 
termined by the Sutherland law [3]. 

Because the pressure is independent of the radial coordinate, it is expedient to find 
the distribution p = p(x, t) from the solution of the equations (i)-(3) averaged across the 
channel. Analogously to [4] for obtaining the pressure we have the following system of one- 
dimensional nonstationary gasdynamics equations 
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where s is the cross-sectional area, X is its perimeter, and y is the adiabatic index, 
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are coefficients of stream inhomogeneity or dispersion of the gasdynamic parameters relative 
to the values of these quantities averaged over the channel section. 

Equations (5)-(7) are an exact corollary of the system (i)-(3). Consequently, no addi- 
tional assumptions simplifying the mathematical model of the process are utilized for deter- 
mination of the pressure. Therefore, the numerical solution of the problem can be obtained 
for each time step in two stages. Equations (5)-(7) are solved in the first, and the pres- 
sure distribution and all the averaged flow characteristics are found in the new time layer. 
Here Tw, qw, $i are taken from the past time layer. Equations (1)-(4) are integrated in the 
second stage, i.e., two-dimensional fields of the desired quantities are computed and accord 
ing to (8) and (9) the ~w, qw, ~i are determined. 

Let us note that in the case of insignificant friction and heat elimination losses and 
for weak influence of the coefficients ~i, exact analytic solutions of the gasdynamics equa- 
tions can be applied (see [5], say). 

The characteristic flow velocities are quite large in problems of the class under con- 
sideration. The range of Reynolds number variation is determined by the interval from 0 to 
i0 7, i.e., the near-wall zone is characterized by the presence of large gradients of the de- 
sired quantities. Moreover, the domain of variation of the space variables is not station- 
ary. Under these conditions it is expedient to make the change of variables 
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in  t h e  e q u a t i o n s  g o v e r n i n g  t h e  p r o c e s s e s  in  t h e  gas  p h a s e .  Here Xst i s  t h e  E u l e r  c o o r d i n a t e  
o f  t h e  l e f t  bounda ry  o f  t h e  f low domain,  R i s  t h e  c h a n n e l  i n n e r  r a d i u s ,  A i s  a t r a n s f o r m a -  
t i o n  p a r a m e t e r  a s s u r i n g  i n c i d e n c e  o f  t he  r e q u i s i t e  number o f  p o i n t s  o f  t h e  d i f f e r e n c e  mesh 
in  t h e  v i s c o u s  s u b l a y e r .  U t i l i z a t i o n  o f  t h e  s u b s t i t u t i o n  (10)  p e r m i t s  a s t a t i o n a r y  domain 
o f  i n t e g r a t i o n  t o  be o b t a i n e d  in  t h e  p l a n e  o f  t h e  new s p a c e  c o o r d i n a t e s .  Le t  us n o t e  t h a t  
f o r  R = c o n s t  t h e  t r a n s f o r m a t i o n  (10)  i s  o r t h o g o n a l .  A domain o f  l a r g e  t e m p e r a t u r e  g r a d i -  
e n t s  e x i s t s  a t  t h e  c h a n n e l  w a i l ,  as  w e l l  as in  t h e  g a s ,  a t  t h e  phase  i n t e r f a c i a l  b o u n d a r y ,  
and t h e r e f o r e ,  c o n d e n s a t i o n  o f  t h e  d i f f e r e n c e  mesh nodes  i s  n e c e s s a r y  even in t h i s  p a r t  o f  
t h e  c o m p u t a t i o n a l  domain.  Moreover ,  t h e  a d j o i n t  f o r m u l a t i o n  o f  t h e  t h e r m a l  p a r t  o f  t h e  p r o -  
blem ( t h e  h e a t  p r o p a g a t i o n  e q u a t i o n s  in  t h e  gas and w a l l  w i t h  bounda ry  c o n d i t i o n s  o f  t h e  
fourth kind on the phase interfacial boundary) requires the application of matched meshes 
in the solid and gas phases. All this can be achieved if a change of variables of the kind 
(i0) is made in (4), where ~i = in (R/r - 1 + h I) (h I is a parameter assuring condensation 
of the different mesh nodes at the channel inner surface) is taken as the new independent 
transverse coordinate. 

The system of equations transformed in this manner has the form 
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P 
<w, qw, 5, u a r e  d e t e r m i n e d  f rom t h e  r e l a t i o n s h i p s  (8)  and ( 9 ) .  

Tak ing  a c c o u n t  o f  t h e  n o n s t a t i o n a r i t y  o f  t h e  change  i n  t h e  t u r b u l e n t  s t r e a m  c o n f i g u r a -  
t i o n  was p e r f o r m e d  on t h e  b a s i s  o f  a model  o f  e n e r g y - s c a l e  t y p e .  The b a l a n c e  e q u a t i o n  f o r  
t h e  t u r b u l e n c e  k i n e t i c  e n e r g y  s e l e c t e d  a c c o r d i n g  t o  [6] i s  s u p p l e m e n t e d  by a t r a n s p o r t  d i f -  
f e r e n t i a l  e q u a t i o n  f o r  t h e  i n t e g r a l  s c a l e  o f  t u r b u l e n t  f l u c t u a t i o n s  [ 7 ] .  In  t h e  c a s e  o f  
n o n s t a t i o n a r y  c o m p r e s s i b l e  gas  f low t h e  model  i s  r e p r e s e n t e d  in  t h e  form 
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The r e l a t i o n s h i p s  [6 ,  8] 
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are used to find the coefficients of turbulent momentum and heat transfer. Here ~E is the 
fraction of turbulent mole energy responsible for the exchange processes. The value of 

is defined as follows. 

= i - -  exp Ko tt , ( 2 1 )  

where a = const, t t = L/ /E is the turbulent fluctuation time computed from local values 
of the turbulence characteristics, K 0 = ((D/u~)Su/St)0 is the nonstationarity parameter, and 
D = 2R is the channel diameter; the values of quantities characteristic for this process are 
marked with the subscript 0. In the case of a gas flow behind an accelerating piston we 

have u 0 = Co, (Su/St) 0 = Co2/s then K 0 = D/~ c (s is the chamber length, c o is the speed 
of sound in the gas initially at rest). A relationship analogous to (21) was used earlier to 
describe turbulent heat and mass transfer in a combustion wave [9]. In this paper (21) is 

used to investigate accelerated streams. It reflects the exchange process mechanism asymp- 
totically correctly in such flows. As follows from (21), as t~ + = the turbulent exchange 
processes proceed in the same manner as in stationary streams. For K 0 + 0 and any fixed ar- 
bitrarily small t~, the effect of nonstationarity is negligibly small. For K 0 § ~ in a 
bounded time interval the heat and momentum transfer of turbulence becomes secondary. 

The system (11)-(20) describing gas flow and heat transfer from the tube wall was in- 
tegrated under the following boundary conditions. 

Initial distributions: 

t~ = 0, v = ui, u s = 0, ur = 0, T = Ti, E ---- Ei, L = Li, (22) 

T w = Tiw. 

All the quantities with subscripts are constants characterizing the initial state of the gas 
and the wall. 
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Boundary conditions: 

x = xp( ta) ,  v = V(t~) ,  u~ = U( t~) ,  T = @(t~), E = L = O. ( 2 3 )  

It is assumed in the computations that the left and right boundaries of the flow domain 
exert no substantial thermal effect on the stream; consequently, the appropriate values of 
the specific volume, velocity, and temperature of the gas on the piston (23) can be obtained 
from the solution of the gasdynamic equations (15)-(17). 

Symmetry conditions are given on the channel axis 

r = O, Ou~/Or = O T / a r  = a E / O r  = a L / a r  = O. ( 2 4 )  

Conditions of adhesion, and no turbulent fluctuations for the field of gasdynamic quan- 
tities adjoint for the temperature are posed on the wall 

r=B,u~= u~=E=L=O,T= ~,%aT/ar=%ag/ar. 

The heat conduction equation (14) for which the heat insulation condition 

(25) 

r = B~, aT~Or = 0 ( 2 6 )  

is used on the tube outer boundary is solved on the channel wall (R z is the channel outer 
radius). 

Conditions of nonpenetration on the flow domain boundaries are boundary conditions for 
the characteristics, determined from (15), (17), averaged over the channel section. 

The results represented in this paper are obtained for helium flows in a steel tube. 
Computations weye executed f or the following values of the original parameters: ~c = 0.3 m, 

R = 3.95 x 10 -3 m, o = 0.918, m = 10 -3 kg, T i = 3092 K, Tiw = 300 K (m is the piston mass, 
and o is the ratio between the masses of the working gas and piston). The initial kinetic 
energy of turbulence E i was determined by the relationship E i = (3/2)Tu2c02, Tu = I0 -~ (Tu 
is the intensity of turbulent fluctuations). The scale of turbulence at the initial instant 
is L i = 0.01R = 3.95 x i0 -s m. 

It is expedient to integrate (11)-(14), (18) and (19) numerically by using implicit fi- 
nite-difference schemes. In this case as the mesh resolution increases along the transverse 
coordinate, it is not necessary to follow the constraints on the time step. Integration of 
(15)-(17) is performed on the basis of explicit conservative schemes [i0]. The constraints 
on the relationships between the time spacings and the longitudinal coordinate that occur 
here are associated with the velocity of perturbation propagation over the stream (and also 
with the rate of change of the process characteristics in time) and correspond to the sub- 
stance of the matter. For relativeIy low Reynolds numbers (Re ~ l0 s ) the integration of (18) 
and (19) is executed in the ordinary way. An increase in Re requires the introduction of a 
near-wall function for the scale of turbulence. In this case (18) operates in a domain 
standing a distance 6R from the wall. The value of 3R is determined by the condition y+ = 
u,(R - r)/v = const (u, = V ~  is the dynamic velocity). The magnitude of the constant 
was selected analogously to [ii, 12]: y+ = 30, which corresponds to the buffer layer domain. 
Introduction of the near-wall function for L with a linear distribution of the scale of tur- 
bulence over the transverse coordinate in the viscous sublayer and in the buffer zone as- 
sures universality of the profile of L in a broad Re range for incompressible fluid flow be- 
hind a hydrodynamic stabilization section. 

Up to now only a quite limited quantity of investigations has been performed for the 
nonstationary heat elimination under Lagrange problem conditions. Among them is [13-15]. 
An attempt is made in [14, 15] for a possibly more complete description of the hydrodynam- 
ic and thermal processes in the domain behind the piston. A turbulence model based on the 
concept of the displacement pathlength is considered to compute the flow in the boundary 
layer domain. Let us note that all these papers are executed within the framework of suf- 
ficiently approximate formulations: not taken into account are the real law of piston mo- 
tion, the finiteness of the volume of the space behind the piston, the influence of nonsta- 
tionarity on the turbulent stream configuration, etc. It is difficult to conduct experi- 
ments under similar conditions because of the brevity of the process of propelling a body by 
a gas stream. 
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Experimental data on accelerated flows for high Re numbers are quite limited. The re- 
liability of the computations represented in the paper were confirmed by experiments [16] 
where nonstationary incompressible fluid flow was investigated behind a hydrodynamic stabil- 
ization section with a linear law of variation of the mass flow rate G with time. Appropri- 
ate graphs of G(t) (dashed line) and integral characteristics of the dynamic action of the 
stream on the wall are represented in Fig. i, where G 2 is the constant mass flow rate after 
emergence into the stationary flow mode with Re 2 = 104 , T o = ~D3/(4G2), ~w2 is the shear 
stress for steady flow with mass flow rate G2, and the dash-dot curve displays the nature 
of distribution of the values of TW/TW2 computed by the E - E model [17]. Good agreement 
with experiment is obtained when using the described model. The solid line corresponds to 
a = 0.0375. Numerical investigation of stationary turbulent incompressible fluid motions in 
a type behind a hydrodynamic stabilization section for Re E i0 s, 107 shows that starting 
with y+ = I00 and down to the channel axis the distributions of the relative values of the 
kinetic energy of turbulent fluctuations E/u, 2 in Y = 1 - r/R in the domain are independent 
of Re. 

Results of calculations are presented in Fig. 2: curve 1 is a computation performed 
under the conditions of an experiment [18] (stationary incompressible fluid flow, Re=4.235x 
10s), the points are test data, the dashed curve is Re = 5 x 106 , while 2 illustrates the 
turbulence kinetic energy profile obtained for a gas flow under Lagrange problem conditions 
at the time t/t 0 = 2.5 in the section z = $/$0 = 0.5 (t o = ~c/C0, $0 is the total gas mass). 
As is seen from the graph the profile E/u, 2 differs from the self-similar in an essential 
manner for nonstationary gas motion behind the acceleration piston. A more complete pattern 
of turbulence development in the domain behind the piston is represented in Figs. 3 and 4. 
Thus, the level lines for E/u, 2 corresponding to the value 0.01 are displayed in Fig. 3. 
The isolines 1-4 are constructed for t/t 0 = 1.5, 2.5, 3.01, 4.5. It is seen how the dimen- 
sions of the turbulized flow domain increase with the lapse of time. There are practically 
no fluctuations in the stream core. However, in the domain directly adjoining the piston a 
zone of elevated turbulent fluctuation intensity exists that occupies the whole transverse 
section whose dimensions also increase with the lapse in time. Isolines of different in- 
tensity at the times t/t 0 = 4.5 (1-7 for E/u, 2 = 200, i00, 30, 8, 6, 4, 2) are represented 
in Fig. 4. As calculations show, the stream nonstationarity noticeably influences the dis- 
tribution of the turbulence scale. Vortices of maximal dimensions are concentrated in a 
part of the channel adjoining the wall. The field of turbulent fluctuations is correlated 
sufficiently weakly on the axis. The magnitude of the scale in the near-axis domain grows 
with time while the profile L(r/R) is self-similar in the domain adjoining the piston where 
the turbulence intensity is high. 

Let us examine certain results of solving the thermal part of the problem. Under the 
conditions being considered the heat transfer is characterized by high intensity and signifi 
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cant inhomogeneity in time and along the channel length. Consequently, necessary for its 
theoretical study is taking account of the flow nonstationarity, the spatial inhomogeneity 
of the stream, and variability of the thermophysical properties of the medium. Because of 
the complexity of the physical phenomenon and the absence of reliable experimental data on 
stationary heat elimination, a different kind of assumption permitting simplification of 
the physical and mathematical model of the phenomenon is used for estimating the influence 
of the heat loss (on the wall) on the gasdynamic pattern of the process and the computation 
of the channel wall temperature mode. Three assumptions of general nature can be extracted 
on whose basis the majority of approximate approaches and methods for studying the thermal 
processes in the conditions under consideration: the heat transfer quasistationarity, the 
absence of influence of the spatial inhomogeneity of the stream, and the variability of the 
thermophysical properties of the gas on the drag and heat elimination laws. 

Recommendations on the computation of the friction and Nusselt number coefficients 
under gas motion conditions behind an accelerating piston are given in this paper on the 
basis of solving the problem within the framework of a sufficiently general formulation (Ii)- 
(26). It is established that criterial dependences of the form [2] can be used in determin- 
ing the friction stress and heat flux in the flow domain not catching the domain directly 
adjoining the piston and the fixed left boundary. Certain data of a computation of the param- 
eters of the thermal and dynamical action of the stream on the channel wall are presented 
in Figs. 5 and 6 where the points correspond to computations using the modified relations 
[2] 

= O-t31Re-~176 (27)  

Nu = O.Ol62Re~176176 ( 2 8 )  

Re = Dpu/~(~), Pr = cpv (T)/~ (T), O = T § rwu~/(2cp), rw = ~ ;  ( 2 9 )  

T~ = ( ~ / 8 ~ u  2, q~ = Nu(O - -  T~)~(T)/D. ( 3 0 )  

He re  5 i s  t h e  f r i c t i o n  d r a g  c o e f f i c i e n t ,  Nu, Pr  a r e  t h e  N u s s e l t  and  P r a n d t l  n u m b e r s ,  0 i s  
the stream stagnation temperature, r w is the coefficient of restoration, T is the mean mass 
gas temperature, and T w is the temerature of the channel inner surface. 

The dependences of ~w on the dimensionless time t/t 0 are shown in Fig. 5. The results 
of computations represented in the graph correspond to the section x = -0.05 m. At the init- 
ial time the coordinate x = 0 corresponds to the piston left boundary. The dashed line here 
and in Fig. 6 are computations for ~ = i. As is seen from the graphs, a computation on the 
basis of an E-L model is in agreement with the results of calculations by means of the rela- 
tionships (27) and (30) that take account of the influence of the temperature factor O/T w. 
Distributions of qw as a function of t/t 0 are presented in Fig. 6. Here there is also good 
agreement of the results of computing qw by the scheme described above and by the relation- 
ships (28) and (30). 

In conclusion, we note the following. Despite the fact that the nonstationarity exerts 
noticeable influence on the field of stream fluctuation characteristics, the hydrodynamic 
and thermal action on the wall is the same as in quasistationary flow. 

As was noted above, turbulence is generated in the near-axis domain (with the exception 
of the zone directly adjoining the piston). Nevertheless, there is a turbulized flow domain 
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in the near-wall part (50-60% as compared with the self-similar motion case). These effects 
of the change in the turbulent stream configuration cancel each other in the sense of deter- 
mining the integral action on the channel wall. 

Therefore, the computation of the friction stress and the heat flux at the wall can be 
performed by using quasistationary dependences (27)-(30) that take account of the influence 
of a temperature factor in an essential manner. 
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